The Voice Conversion Challenge 2016

Tomoki Toda (Nagoya U, Japan) Ling-Hui Chen (USTC, China) Daisuke Saito (Tokyo U, Japan)

Fernando Villavicencio (NII, Japan)

Sep. 10th, 2016

Voice Conversion (VC)

 Technique to modify speech waveform to convert non-/paralinguistic information while preserving linguistic information

- Research progress since the late 1980s
 - Development of various VC techniques (& potential applications)
 - Not straightforward to compare across different VC techniques...

Voice Conversion Challenge 2016

Objective

Better understand different VC techniques by comparing their performance using a freely-available dataset as a common dataset

- Following a policy of Blizzard Challenge [Black & Tokuda, 2005]
 "Evaluation campaign" rather than "competition"
- Also reveal a risk of VC techniques
 - Effective but possible to be used for spoofing
 - Important to inform people of VC as "kitchen knife"

Timelines of VCC 2016

Task of VCC 2016

- Simple speaker identity conversion [Abe et al., 1990]
 - Develop conversion systems using parallel data of each speaker pair

VCC 2016 Dataset [http://dx.doi.org/10.7488/ds/1430]

- DAPS (Data And Production Speech) [Mysore, 2015]
 - Professional US English speakers
 - Freely available [https://archive.org/details/daps_dataset]
- Design of VCC 2016 dataset
 - Select 10 speakers including 5 female and 5 male speakers
 - Manually segmented into 216 sentences in each speaker
 - Down-sampled to 16 kHz

	# of speakers	# of sentences			
Sources	3 females & 2 males	162 for training & 54 for evaluation			
Targets	2 females & 3 males	162 for training			

Rules of VCC 2016

Requirement

• Develop all $5 \times 5 = 25$ combinations of source-target pairs

Main guidelines

- Transform any acoustic features
- Manual edit or tuning of systems in conversion

 NOT allowed
- Use manual transcriptions
- Use automatic speech recognition (ASR)
- Use external data outside VCC 2016 dataset → OK!
- Discard a part of utterances of the training set
- Submit multiple entries

 NOT allowed

▶ OK !

 $\longrightarrow OK!$

→ NOT allowed

Evaluation Methodology

Subjective evaluation

- Use only 16 speaker pairs (2 males & 2 females) from 25 speaker pairs
- Use headphones in sound-treated booths
- Listeners: 200 subjects

1. Opinion test on naturalness

- Evaluate naturalness of each voice sample using a 5-scale opinion score
 - 1 (completely unnatural) to 5 (completely natural)

2. Pair-comparison test on speaker similarity

- Judge whether 2 voice samples are uttered by the same speaker
 - Decision with confidence

```
Same, absolutely sure Same, not sure Different, absolutely sure
```

Baseline System (Freely Available)

- VC tools [Toda] within FestVox [Black & Lenzo]
 - Analysis methods
 - F_0 extraction with Edinburgh Speech Tools [Taylor et al.]
 - Spectral analysis with Signal Processing Toolkit (SPTK) [Tokuda et al.]

Converted parameters

- Mel-cepstrum (MCEP): Trajectory-wise conversion (MLPG) using global variance (GV) w/ Gaussian mixture model (GMM)
- Log-scaled F_0 (LF_0): Linear transformation w/ mean & variance (M&V)

Synthesis methods

- Simple pulse/noise excitation
- Mel-log spectrum approximate (MLSA) filter

Submitted Systems

Team name	Ana-Syn		Converted Parameters &	Conversion	Methods	5	ASR	+DB
Α	Ahocoder	МСЕР	GMM, MGE, MLPG, PF	$LF_0M\&V$			No	No
В	STRAIGHT	MCEP	Exemplar, MLPG, GV	$LF_0M\&V$			No	No
С	STRAIGHT	MLSP	DNN & GMM, PF	$LF_0M\&V$			No	Yes
D	STRAIGHT	МСЕР	MDN & GMM, PF	$LF_0M\&V$			No	No
E	Ahocoder	МСЕР	GMM, FW & Scaling	$LF_0M\&V$			No	No
F	STRAIGHT	МСЕР	Phone posteriorgram	$LF_0M\&V$			Yes	Yes
G	STRAIGHT	МСЕР	LSTM-RNN	$LF_0M\&V$		Spk rate	Yes	Yes
Н	STRAIGHT	MCEP	DNN, MTL	$LF_0M\&V$		Spk rate	Yes	Yes
1	Ahocoder	LSP	GMM, MMSE, i-vector	$LF_0M\&V$			No	Yes
J	STRAIGHT	МСЕР	GMM, MS, diff filter	$LF_0M\&V$	BAP		No	No
K	TEAP	MLSP	FW & GMM, diff filter	F_0 shift		Spk rate	No	No
L	STRAIGHT	Mult	i systems & selection	$LF_0M\&V$	Resid		Yes	Yes
M	STRAIGHT	MCEP	LSTM	$LF_0M\&V$			No	No
N	LPC	LP coef	FW	F_0 shift		Spk rate	No	No
0	STRAIGHT	ST spec	FW & GTDNN	LF_0LSTM	BAP		No	No
Р	STRAIGHT	МСЕР	GMM, MLPG, GV	$LF_0M\&V$	BAP		No	No
Q	Ahocoder	MCEP	Frame selection, MLPG	$LF_0M\&V$			No	No

Submitted Systems

 F_0 pattern Excitation Duration

Spectral_envelope			Duration					
Team name	Ana-Syn		Converted Parameters &	Conversion	Methods		ASR	+DB
Α	Ahocoder	MCEP	GMM, MGE, MLPG, PF	$LF_0M\&V$			No	No
В	STRAIGHT	MCEP	Exemplar, MLPG, GV	$LF_0M\&V$			No	No
С	STRAIGHT	MLSP	DNN & GMM, PF	$LF_0M\&V$			No	Yes
D	STRAIGHT	MCEP	MDN & GMM, PF	$LF_0M\&V$			No	No
E	Ahocoder	MCEP	GMM, FW & Scaling	$LF_0M\&V$			No	No
F	STRAIGHT	MCEP	Phone posteriorgram	$LF_0M\&V$			Yes	Yes
G	STRAIGHT	MCEP	LSTM-RNN	$LF_0M\&V$		Spk rate	Yes	Yes
Н	STRAIGHT	MCEP	DNN, MTL	$LF_0M\&V$		Spk rate	Yes	Yes
1	Ahocoder	LSP	GMM, MMSE, i-vector	$LF_0M\&V$			No	Yes
J	STRAIGHT	MCEP	GMM, MS, diff filter	$LF_0M\&V$	BAP		No	No
K	TEAP	MLSP	FW & GMM, diff filter	F_0 shift		Spk rate	No	No
L	STRAIGHT	Mult	i systems & selection	$LF_0M\&V$	Resid		Yes	Yes
M	STRAIGHT	MCEP	LSTM	$LF_0M\&V$			No	No
N	LPC	LP coef	FW	F_0 shift		Spk rate	No	No
0	STRAIGHT	ST spec	FW & GTDNN	LF_0LSTM	BAP		No	No
Р	STRAIGHT	MCEP	GMM, MLPG, GV	$LF_0M\&V$	BAP		No	No
Q	Ahocoder	MCEP	Frame selection, MLPG	$LF_0M\&V$			No	No

Discussion and Future Plan

Issues of listening test

- US English evaluated by British English subjects (less sensitive to prosody?)
- Hard to separately evaluate prosodic and spectral conversion

Suggestions towards next challenge

- Use fewer or more training utterances
- Use non-parallel datasets
- Use data recorded in non-ideal acoustic conditions

Future plan and collaboration

- Provide converted voices for the Automatic Speaker Verification
 Spoofing and Countermeasures (ASVspoof) Challenge [Wu et al., 2015]
- Hold VCC every 2 years (?)
- Appreciate you help (e.g., provide data, manage evaluation, ...)!

Conclusions

- Voice Conversion Challenge 2016 (VCC 2016)
 - Task: speaker identity conversion
 - Datasets: VCC 2016 dataset from DAPS dataset
 - Participants: **17 teams**
 - Test: naturalness & speaker similarity evaluated by 200 subjects
 - Results: MOS on naturalness < 3.5 & correct rate on similarity < 75%
 - ✓ VCC homepage: http://vc-challenge.org/ (to be updated)
 - ✓ Datasets & results: http://dx.doi.org/10.7488/ds/1430
 - ✓ Email: vcc2016@vc-challenge.org

Any comments and suggestions are very welcome!

Acknowledgement

- We are grateful to
 - COLIPS for sponsoring the evaluation
 - iFLYTEK for supporting database development
- This work was supported in part by
 - EPSRC through Programme Grant EP/I031022/1 (NST) and EP/J002526/1 (CAF)
 - JSPS KAKENHI Grant Number 26280060
- We specially thank to Blizzard Challenge Organizers [King et al.] to kindly allow us to use the evaluation system!